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This report covers the work done on NASA Grant NAG-1-431 for the period 

from November 1, 1986 to April 30, 1987. At the beginning of the grant period 

there arose an opportunity to contribute to the effort to provide inspection 

of the bondlines in the Space Shuttle Solid Rocket Motor (SRM). The bondlines 

are defined as the interface between components of the rocket motor, such as, 

the case, liner, insulation, and propellant. In collaboration with the 

researchers of the Materials Characterization and Instrumentation Section this 

research was the focus of the past six months. 

The effort in the investigation of the bondlines in the membrane region 

of the SRM has centered on representative samples provided by Morton/Thiokol. 

These samples have pull-tabs or  in one case grafoil inserts to simulate 

delaminations at various points in the multilayer structure of steel case, 

liner, insulation, liner, and propellant. This report will discuss our 

continuing approach to examining these defects which is predicated on a model 

of an ultrasonic wave propagating in a lossy multilayer resonant structure, 

the experimental arrangements used, and the results of these experiments. 

MODEL CONSIDERATIONS 

The structure under investigation is the Shuttle SRM, a multilayer 

resonant structure with lossy components. The steel case reverberates readily 

since it has very little attenuative loss while the insulation and propellant 

are very lossy. Therefore, unless one is careful in examining this type of 

structure the ringing in the steel can mask delaminations in the insulation 

and propellant bondline regions. Shown in figure 1 is the representative 

model that we have used to indicate the type of measurements to be made. 

We have used a transmission line model which is shown schematically in 

figure 1. The components of the structure are modeled as individual complex 

valued impedances in a transmission line (A short discussion of the model can 

be found in Methods of Experimental Physics , Volume 19 , edited by Peter D. 
Edmonds, pp 41-42). The result for a lossy transmission line can be 

represented -as : 

zin = zo { [ z1 + Zotanh(81) l/[zo + Zltanh(B1)I 1, 
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where 8 = a + i k , l  i s  t h e  thickness of t h e  l aye r ,  and k i s  t h e  wave number 

( O / c ) .  T h e  complex impedance is solved f o r  successive l a y e r s  over a range of 

f requencies  ( i n  t h i s  case  from 0 t o  2 MHz); t h e  t o t a l  frequency response of 

t h e  mul t i l aye r  resonator  can then  be used t o  c a l c u l a t e  t h e  response of t h e  

system f o r  var ious input  waves. T h i s  i s  done by convolving t h e  input  wave form 

with t h e  response of t h e  resonant s t r u c t u r e .  T h e  l i s t i n g  of t h e  program f o r  

t h e  model c a l c u l a t i o n  is  included in t h e  appendix along w i t h  t h e  model 

parameters t h a t  a r e  input .  These values used i n  t h e  c a l c u l a t i o n  w e r e  obtained 

from T i t a n  SRM data; a t  p resent  w e  a r e  independently determining t h e  s h u t t l e  

SFU4 values  from indiv idua l  specimens provided by Morton/Thiokol. 

T h e  r e s u l t s  of t h e  model ca lcu la t ion  are important t o  t h e  o v e r a l l  

eva lua t ion  of t h e  SRM samples provided. Shown i n  f i g u r e  2 i s  t h e  flow f o r  t h e  

i n v e s t i g a t i o n  of t hese  samples. The model c a l c u l a t i o n  provides  t h e  s t a r t i n g  

po in t  t o  determine which a r e  t h e  best  u l t r a s o n i c  parameters t o  measure f o r  a 

search  of delaminations i n  the bondlines. Figure 2 i l l u s t r a t e s  t h a t  once t h e  

c h a r a c t e r i s t i c s  of such a system are  predicted, t h e  approach t o  d e t e c t i n g  

delaminat ions a t  the  bondlines can t a k e  many forms. The many techniques 

i l l u s t r a t e d  i n  t h i s  f i g u r e  a l l  must be  implemented w i t h  t h e  l i m i t a t i o n s  of t h e  

a c t u a l  s t r u c t u r e  taken i n t o  account. These l i m i t a t i o n s  are c h i e f l y  on t h e  

frequency range of t he  u l t r a s o n i c  waves being used i n  these techniques.  The 

r e s u l t s  of model c a l c u l a t i o n s  and experiments w i l l  i l l u s t r a t e  t h i s  po in t .  

The type of r e s u l t s  t h a t  can be expected from an experiment can be 

p red ic t ed  by t h e  model. W e  can i l l u s t r a t e  t h i s  by reviewing t h e  r e s u l t s  of a 

c a l c u l a t i o n  f o r  a specimen w i t h  an a i r  gap between t h e  i n s u l a t i o n  and 

p rope l l an t .  T h e  computer gene ra t ed tone  b u r s t  of 0 .5  MHz i s  shown i n  f i g u r e  3 .  

This frequency value was picked t o  match t h e  lowest frequency t ransducer  t h a t  

w e  have a v a i l a b l e  a t  t h i s  t i m e .  Figure 4 is t h e  frequency response f o r  a 

mul t i l aye r  resonator  of 2" of water, 0.5" of steel, 0.1"  of i n su la t ion ,  and 

4 .0"  of p rope l l an t .  The resonance points  a r e  t h e  only f requencies  where 

apprec iab le  energy is  coupled i n t o  the  t o t a l  s t r u c t u r e ;  t hus  t h e  choice of 

frequency for t h e  input  wave i s  very important.  The d o t t e d  l i n e s  correspond t o  

t h e  c a l c u l a t i o n  which includes a 0.030" a i r  gap between t h e  i n s u l a t i o n  and t h e  

p rope l l an t .  The convolution of t h e  resonator  response and the  input  wave 

y i e l d s  t h e  observed wave form f o r  such a system. Shown i n  f i g u r e  5 is  t h e  

r e s u l t i n g  wave form f o r  t h e  configurat ion without an a i r  gap. The m i d d l e  

f i g u r e  i s  t h e  s p e c t r a l  response of the  wave af ter  a windowing opera t ion  i s  

performed from channel 400 t o  channel 800 .  This windowing opera t ion  improves 
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t he  s i g n a l  t o  noise .  Thus w e  only include t h a t  p a r t  of t h e  wave of i n t e r e s t  

which comes a f t e r  t h e  f r o n t  surface r e f l e c t i o n  and deeper down i n  t h e  model 

s t r u c t u r e .  W e  c a l l  t h a t  the resonance decay technique. The bottom p a r t  of t h e  

f i g u r e  is  t h e  response of t h e  resonant s t r u c t u r e .  In  f i g u r e  6 i s  t h e  same 

c a l c u l a t i o n s  f o r  a s t r u c t u r e  w i t h  an a i r  gap between t h e  i n s u l a t i o n  and 

p rope l l an t .  A comparison between t h e  t o p  wave forms i n  f i g u r e s  5 and 6 shows 

t h a t  t h e  a c t u a l  amplitude d i f fe rences  i n  t h e  wave excluding t h e  f r o n t  su r f ace  

r e f l e c t i o n  are s u f f i c i e n t  t o  image t h e  a i r  gap. The comparison i n  f i g u r e  7 

shows t h e  s p e c t r a l  magnitude d i f fe rences  between t h e  two wave forms windowed 

over  t h e  same channel numbers (400  t o  800). T h e  d i f f e r e n c e  is very no t i ceab le .  

The s h i f t  i n  frequency of t h e  peak is a l s o  ev ident  f o r  t he  change i n  t h e  

resonant  s t r u c t u r e  by adding an a i r  gap. The d i f f e rences  i n  t h e  resonant 

s t r u c t u r e s  model is shown i n  f igu re  8; it is c l e a r  t h a t  only some frequencies  

can probe the  s t r u c t u r e  f o r  defects. I n  f a c t  f o r  t h e  case  of t h e  0.1"  t h i c k  

i n s u l a t i o n  there a r e  d i f f e r e n t  techniques ( a l l  r e l a t e d )  t h a t  can image a 

delamination by processing t h e  resonance decay wave. For a given input ,  either 

s i n g l e  pulse  o r  tone  b u r s t ,  an examination of t he  frequency content  o r  f o r  a 

tone  b u r s t  input  t h e  peak amplitude of t he  received wave can image a 

delamination. 

For a model w i t h  a t h i c k e r  layer  of i n s u l a t i o n  (0 .5")  t h e  l e v e l  of 

d e t e c t a b i l i t y  f o r  a 5 0 0  kHz wave input is  much lower. T h e  same c a l c u l a t i o n  

w i t h  a 0.5" l a y e r  of i n s u l a t i o n  i s  shown i n  f i g u r e  9 f o r  no a i r  gap and i n  

f i g u r e  1 0  fo r  an a i r  gap between t h e  i n s u l a t i o n  and p rope l l an t .  The 

d i f f e r e n c e s  between the  wave forms a r e  undetectable  when comparing t h e  t o p  

f i g u r e s  i n  f i g u r e  9 and 10. I n  f i g u r e  11 t h e  s p e c t r a l  response f o r  both 

s t r u c t u r e s  a r e  shown f o r  a window from channel 400  t o  channel 800 .  The 

d i f f e rence  only exists a t  t h e  peak and is  only about 13 percent .  The 

d i f f e r e n c e s  i n  t h e  resonant s t r u c t u r e  response is  shown i n  f i g u r e  1 2 .  The 

response i n  f i g u r e  12 near  500 kHz is down by a f a c t o r  of 300 compared t o  t h e  

r e s u l t  f o r  0.1" i n su la t ion ;  even a t  a frequency of 220 kHz t h e  response i s  

down by a f a c t o r  of 13 f o r  t h e  same comparison. The a c t u a l  da t a  w i l l  

i l l u s t r a t e  t h a t  t h e  d e t e c t a b i l i t y  of defects w i t h  a probing frequency of 500 

kHz ,us ing  the  techniques discussed i n  t h i s  repor t ,  i s  l i m i t e d  t o  t h i n  

i n s u l a t i o n  th ickness  a t  t he  present  t i m e .  
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Experimental Procedures 

The experiments where performed i n  a water ba th  with a broadband damped 

t ransducer  with a nominal c e n t e r  frequency of 500 kHz. A computer c o n t r o l l e d  

scanning br idge  was employed t o  scan  t h e  samples. The experimental  

arrangements a r e  shown i n  f i g u r e s  13 and 14. The d i f f e r e n t  techniques shown i n  

t h e s e  f i g u r e s  concentrated on examining t h e  energy r e tu rned  i n  t h e  resonance 

decay. 

The f irst  arrangement is shown i n  f i g u r e  13. A sampled continuous wave i s  

generated by g a t i n g  t h e  t r a c k i n g  generator  output of a spectrum analyzer  i n t o  

t h e  t ransducer  and then  g a t i n g  t h e  reflected wave i n t o  the  spectrum analyzer .  

T h e  r e f l e c t i o n  i s  ga ted  t o  only include t h a t  p a r t  of t h e  wave p a s t  t h e  f r o n t  

su r f ace  r e f l e c t i o n .  T h e  e n t i r e  spectrum can be s t o r e d  on t h e  computer f o r  

l a t e r  ana lys i s  o r  t h e  spectrum analyzer can be set up t o  output only one 

frequency and t h e  video output  can be acquired, read w i t h  a d i g i t a l  vol tmeter  

and inpu t  i n t o  a computer along w i t h  t h e  coord ina tes  o f  t h e  t ransducer  t o  

cons t ruc t  an image of t h e  sample and delamination. T h i s  arrangement is  s i m i l a r  

t o  a tone  b u r s t  input  t o  t h e  transducer with t h e  appropr ia te  processing of t h e  

r e f l e c t e d  wave. 

The  experimental  arrangement shown i n  f i g u r e  1 4  was used f o r  most of t h e  

r e s u l t s  repor ted  here. The wave input t o  t h e  t ransducer  can e i t h e r  be a tone 

b u r s t  o r  a pu lse .  T h e  tone  b u r s t  was generated w i t h  a HP3314 func t ion  

genera tor  capable  of de l ive r ing  a s ine  wave tone b u r s t  of any frequency, 

amplitude, o r  e x t e n t .  T h e  pu lse  was suppl ied  by a Metrotek M p  215 pu l se r .  T h e  

input  and received wave w e r e  coupled t o  t h e  t ransducer  by a diode c l i p p e r  

c i r c u i t .  The reflected wave can  be analyzed by var ious  techniques.  T h e  wave 

could be gated t o  inc lude  the  bondline regions and then  peak de tec t ed  t o  make 

an i m a g e  of t h e  amplitude a s  a funct ion of pos i t i on .  T h e  wave can a l s o  be 

input  t o  a d ig i t i ze r  (Data Precis ion 6000)  f o r  pos t  processing.  The pos t  

p rocess ing  can be s i m i l a r  t o  t h a t  described i n  t h e  model c a l c u l a t i o n s .  The 

frequency content  o r  i n t eg ra t ed  energy contained i n  some region of t he  

reflected wave can be used t o  image t h e  specimen. I n  a l l  cases  t h e  d a t a  was 

input  t o  a computer f o r  la ter  ana lys i s  and d i sp lay  on an i m a g e  ana lyzer .  
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Experimental Results 

The f i rs t  specimen examined is  shown schematical ly  i n  f i g u r e  15. This 

sample is  a f l a t  steel p l a t e  w i t h  i n su la t ion  bonded t o  it. Gra fo i l  i n s e r t s  

where included t o  s imulate  delaminations of var ious s i z e s .  T h e  g r a f o i l  was 

placed both i n  f r o n t  and behind a l i n e r  ma te r i a l  which makes t h e  bond between 

t h e  steel and in su la t ion .  T h e  l i n e r  ma te r i a l  was a l s o  va r i ed  i n  th ickness  t o  

s imula te  t he  range of values  usually p re sen t  i n  t h e  manufacture of t he  SRM. 

A pu l se  echo technique was used w i t h  a 5 MHz t ransducer  and peak de tec t ion  

of t h e  t e n t h  reverbera t ion  between the  f ace  of t h e  t ransducer  and t h e  

specimen. T h e  t ransducer  had a focus length  of 4 . 0 "  and an ape r tu re  of 0.5". 

Such a high frequency was poss ib l e  i n  t h i s  case  because t h e  delamination was 

e s s e n t i a l l y  d i r e c t l y  behind the  s t e e l  l a y e r  and t h e  r e t u r n  i s  d i r e c t l y  

dependent on t h e  amount of energy coupled t o  t h e  i n s u l a t i o n  l aye r .  The effect 

of t h e  l i n e r  is  small  because of i t s  th inness .  Figure 1 6  shows t h e  r e s u l t  of 

t h e  scan over a range of 60x20 centimeters w i t h  a s t e p  s i z e  of 0.2 

cent imeters .  T h e  image has been cas t  i n  grey s c a l e  t o  represent  the  r e l a t i v e  

amplitude of t h e  reflected wave. The s c a l e  has a range of 27 dB from low 

values  i n  black t o  high values  i n  w h i t e .  The w h i t e  shapes of t h e  i n s e r t s  a r e  

w e l l  resolved i n  t h i s  scan. A t  the  delamination the  r e f l e c t e d  s i g n a l  is  l a r g e r  

than elsewhere s ince  a l l  t h e  energy is  reflected back and not  coupled i n t o  t h e  

l o s s y  i n s u l a t i o n  l a y e r .  The fuzzy shape f o r  t h e  i n s e r t s  behind t h e  l i n e r  may 

be due t o  a t t enua t ion  of t h e  wave i n  t h e  l i n e r  o r  d i f f r a c t i o n  e f f e c t s  i n  t h e  

l i n e r .  It was poss ib l e  t o  u s e  a high frequency t ransducer  i n  t h i s  case s ince  

the  steel i s  not  very lo s sy  and w e  were examining a bondline j u s t  behind t h e  

steel. For examinations of t h e  in su la t ion  / prope l l an t  bondline t h i s  i s  not 

t h e  case  s i n c e  t h e  ma te r i a l s  a r e  very a t t enua t ing  even a t  low frequencies .  

The second sample examined was Sample 8-1 which i s  shown i n  f i g u r e  1 7 .  

T h i s  p a r t i c u l a r  sample was examined w i t h  s e v e r a l  techniques.  For t h i s  and t h e  

fol lowing experiments t h e  transducer used was a broadband h ighly  damped 

t ransducer  with a nominal cen te r  frequency of 500 kHz, a 2 .0"  f o c a l  length,  

and an ape r tu re  of 1.125 inches.  Shown i n  f i g u r e  18  i s  a scan generated from 

t h e  output  of t h e  video s i g n a l  f r o m t h e  spectrum analyzer  when t h e  t r a c k i n g  

genera tor  is  fixed a t  500 kHz. The reflected s i g n a l  was ga t ed  i n t o  t h e  

spectrum analyzer  so  a s  t o  include the  i n t e r n a l  bondl ines .  The scan s i z e  was 

8x12 cent imeters  w i t h  a 0 .2  centimeter s t e p s i z e .  T h e  t r i a n g u l a r  shaped 

delamination i s  w e l l  ev ident .  
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A s i m i l a r  technique t o  t h e  above i s  accomplished by i n p u t t i n g  a tone  b u r s t  

t o  t h e  t ransducer .  In  f i g u r e  1 9  the  r e s u l t  is shown f o r  a tone  b u r s t  of 1 0  

cyc le s  of a 500 kHz s i n e  wave which was amplif ied by an E N 1  3100L power 

ampl i f i e r .  T h e  reflected wave w a s  peak detected i n  t h e  resonance decay region 

and the  r e s u l t i n g  amplitude measured i s  shown a s  a r e l a t i v e  grey s c a l e  image 

over a range of 22 dB i n  f i g u r e  1 9 .  The scan s i z e  was 9x15.5 cent imeters  w i t h  

a s t e p  s i z e  of 0.25 cent imeters .  The delamination i s  w e l l  resolved.  

To test o t h e r  poss ib l e  techniques t h e  above experiment, where a 500 kHz 

tone  b u r s t  was used a s  t h e  input  wave, was repea ted  w i t h  t h e  output now being 

d i g i t i z e d  f o r  pos t  processing.  The da ta  was sampled over 256 po in t s  with a 

sampling frequency of 5 MHz. One of t he  waveforms t h a t  w a s  d i g i t i z e d  i s  shown 

i n  f i g u r e  20. The de lay  w a s  set t o  exclude p a r t  of t h e  f r o n t  su r f ace  

r e f l e c t i o n  , al lowing greater amplif icat ion of t h e  l a t e r  p a r t  of t h e  wave. T h e  

wave was windowed from channel number 150 t o  250, and t h i s  r e s u l t i n g  wave was 

input  t o  an FFT f o r  t h e  s p e c t r a l  response which i s  shown i n  f i g u r e  21 .  The 

s o l i d  l i n e  i s  the r e s u l t  f o r  x-y pos i t ion  1,l and t h e  d o t t e d  l i n e  corresponds 

t o  p o s i t i o n  16,21 which i s  over the  delamination. The peak is  much smal le r  

over t h e  delamination and is sh i f t ed  s i m i l a r  t o  t h e  r e s u l t  of t h e  model 

c a l c u l a t i o n  i n  f i g u r e  7 .  The r e l a t i v e  d i f f e rences  between t h e  model and t h e  

experiment a r e  not  commensurate but  a s  noted previous ly  t h e  values  input  t o  

t h e  model c a l c u l a t i o n  a r e  being remeasured. T h i s  is  t h e  same ana lys i s  

d i scussed  i n  t h e  model ca l cu la t ion  sec t ion .  T h i s  approach was repeated f o r  a l l  

t h e  da t a ,  which was windowed t o  include only t h e  con t r ibu t ions  from t h e  

bondline region, then a f a s t  Fourier t ransform (FFT) was taken and t h e  s p e c t r a  

over a range from 0.45 t o  0.52 MHz was i n t e g r a t e d  t o  a r r i v e  a t  a number 

r ep resen ta t ive  of t h e  energy returned from t h a t  l o c a t i o n  on t h e  sample. 

Again, t h e  delamination appearing i n  f i g u r e  22 is  w e l l  resolved and e x h i b i t s  a 

r e l a t i v e  range of 1 4  dB. 

The test was again repeated fo r  a pu lse  input  t o  t h e  t ransducer  r a t h e r  

than a tone b u r s t .  T h i s  approach i s  t h e  normal mode of t e s t i n g  w i t h  most 

commerical NDE systems. T h e  r e s u l t  of t h e  d i g i t i z a t i o n  and same pos t  

processing i s  shown i n  f i g u r e  23. While, t h e  r e s u l t  of t he  peak de tec t ion  i s  

shown i n  f i g u r e  2 4 .  A pulse  dr iven  broadband t ransducer  responds d i f f e r e n t l y  

then a tone  b u r s t  d r iven  t ransducer .  A tone  b u r s t  provides  energy i n  only a 

narrow frequency band w h i l e  a pulse w i l l  promote a broadband response i n  t h e  

t ransducer .  In  t h e  d iscuss ion  of the model c a l c u l a t i o n  it was noted t h a t  t h e  

6 



energy inpu t  t o  t h e  resonant s t ruc tu re  is  only e f f i c i e n t  over a narrow band of 

f requencies .  Therefore a pu lse  input is  an i n e f f i c i e n t  way t o  examine t h i s  

s t r u c t u r e  s i n c e  it pu t s  energy i n  frequency bands which do not provide an 

i n t e r n a l  view of t h e  s t r u c t u r e .  This  is  t h e  probable cause of t h e  s p e c t r a l  

a n a l y s i s  i n  f i g u r e  23 having l e s s  reso lu t ion  than  f i g u r e  1 9 .  I n  t h e  case  of 

t h e  peak detected scan of f i g u r e  24 , t h e  s i g n a l  t o  no i se  i s  i n s u f f i c i e n t  t o  

r e so lve  any delamination ind ica t ion .  Figure 23 e x h i b i t s  a r e l a t i v e  range of 

1 2 . 6  dB w h i l e  f i g u r e  24 e x h i b i t s  a range of 7 . 6  dB. Fur the r ,  s ince  pulse  echo 

techniques a r e  t h e  normal mode of t e s t i n g  w i t h  most c o m e r i c a l  NDE systems, it 

is clear t h a t  an advanced W E  inspect ion i s  necessary us ing  frequency domain 

approaches. 

Sample 4-1 was a l s o  examined. T h i s  sample has an i n s u l a t i o n  th ickness  of 

0.5" and t h e  delamination a f t e r  the  i n s u l a t i o n  and before  t h e  

l i ne r -p rope l l an t .  T h e  first technique shown on t h e  t o p  of f i g u r e  25 and 

l abe led  'L' is t h e  r e s u l t  of a scan us ing  t h e  spectrum analyzer  set a t  5 0 0  kHz 

and us ing  t h e  video out  a s  t h e  detected s i g n a l .  T h e  bottom of f i g u r e  25 

l abe led  ' I '  is  t h e  image developed from s i g n a l  processing t h e  d i g i t i z e d  wave 

form from a reflected tone  b u r s t  w i t h  a frequency of 500 kHz. T h e  digi t ized 

wave was windowed, an FFT was t aken ,  and t h e  magnitude over a frequency range 

of 0 .48  t o  0.52 MHz was in t eg ra t ed  and used t o  c r e a t e  t h e  grey s c a l e  image. 

Although both images g ive  some indica t ion  of damage a t  t h e  approximate 

l o c a t i o n  of t h e  delamination t h e  view i s  not w e l l  resolved.  Recal l  i n  t h e  

model c a l c u l a t i o n  t h a t  t he  poss ib le  response a t  t h i s  frequency i s  very small 

compared t o  t h a t  f o r  only a 0.1" t h i c k  i n s u l a t i o n  sample. Much better 

pene t r a t ion  can be expected f o r  lower frequency input  waves. 

Conclusions 

This r epor t  has given a s h o r t  review of the  work completed t o  d a t e  on t h e  

i n v e s t i g a t i o n  of t h e  bondline i n t e g r i t y  i n  t h e  membrane region of t h e  SRM. The 

model c a l c u l a t i o n s  c l e a r l y  po in t  the way f o r  t h e  inves t iga t ion .  The need f o r  

low frequency t ransducers  has been demonstrated i n  both t h e  model and 

experimental  r e s u l t s .  The need t o  u s e  probing techniques which make e f f e c t i v e  

use of t h e  frequency windows open t o  t h e  i n t e r n a l  s t r u c t u r e  is a l s o  evident  

from t h e  theory  and experiment. There a r e  a number of samples t h a t  have been 

received and s t i l l  need t o  be examined. 
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APPENDIX 
The following is a program written in Fortran to run on a VAX 750 that 
calculates the frequency response of a multi-component transmission line with 
lossy components. 

c written by W.P. Winfree 
c modified by B.T. Smith 
c************************************************************************ 
C calculates the reflection from up to 20 layers 

C properties of layers in/out from file 

C does calculation in the frequency domain 
C frequency range 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C Implicit None 

Integer I, Npts-fft, Number-layers 
c Npts-fft - number of points in f f t  
C Parameter ( Npts-fft = 1024 ) 

from a lower 

************ 

frequency to higher 

***************** 

Real Min-f req, Max-f req, Pi, F, Thickness 
C Max-freq - Maximum frequency of fourier transform 
c Parameter ( Min-freq = 3.0035 ) 
c Parameter ( Max-freq = 4.OE5 ) 

Real Realgart, Imaggart, ArcTangent 
Complex Data( 2048 1 ,  Reflection,XC(2048) ,DATA1 (2048) ,XC1(2048) 
Real Phase(20481, Freq(2048) 
Character Output_file*40, Input file*40,FILENAMEA*40 
INTEGER"2 INDEX, CHAN1, CHAN2 
REAL XR(2048) ,D(2O48) ,R(2048) ,IMAG(2048) ,D1(2048) ,R1(2048) 
DIMENSION DSYS (2048) ,XI(4096) 
INTEGER*4 XSIZE,YSIZE,NO-BYTES 
CHARACTER"1 ANS 
CALL CMDLIN ('DEV VW SIZE 7,13 ERASE') 

- 

***INPUT SYSTEM RESPONSE********* 
TYPE *,'INPUT THE NAME OF SYSTEM RESPONSE FILE' 
ACCEPT ' (A) ',FILENAMEA 
TYPE *,'INPUT SAMPLE FREQUENCY OF INPUT' 
ACCEPT *, SFREQ 

100 CONTINUE 

OPEN (UNIT=10, FILE=FILENAMEA, READONLY, 

READ ( 10 ) XS IZE, YS IZE, NO-BYTES 
TYPE *,'X= ',XSIZE,' Y= ',YSIZE,' # = ',NO-BYTES 

CLOSE (10) 

1 STATUS='OLD',FORM='UNFORMATTED') 

READ(10) (DSYS(1) ,I=l,NO-BYTES) 

IF(N0 - BYTES .NE. 1024)THEN 
DO I=NO_BYTES+1,1024 

DSYS ( I) -0.0 
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END DO 

NO-BYTES-1024 
END IF 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Write ( 6, (a) ) '$Minimum and maximum frequency : 
Read ( 5, * j Min-freq, Max-freq 
Min-freq = Min-freq*l.e6 
Max-freq = Max-freq*l.e6 

*******PROPERTIES FILES WITH AND WITHOUT AIR GAPS********* 

Write ( 6, ' (a) ) '$Properties File WITH NO AIR GAP: ' 
Read ( 5, '(a) ' ) Input-file 
Open ( Unit = 3, File = Input-file, Status = 'Old', ReadOnly ) 

Call Getgroperties ( Number-layers ) 

Close ( Unit = 3 ) 

NPTS-FFT=NO-BYTES 

F = Min-freq 

Do I = 1, Npts_fft/2+1 
c calculate response in frequency domain 

Data(1) = Reflection(f, Number-layers ) 
F = F + (Max-freq - Min freq) / (  Npts-fft-1 ) - 

End do 
******** 

Write ( 6, '(a) ) '$Properties File WITH AIR GAP: 
Read ( 5, (a) ' ) Input-file 
Open ( Unit = 3,  File = Input-file, Status = 'Old', ReadOnly ) 

Call Getgroperties ( Number-layers 

Close ( Unit = 3 ) 

NPTS-FFT=NO-BYTES 

F = Min-freq 

DO I = 1, NptSfft/2+1 
C calculate response in frequency domain 

Datal (I) = Reflection (f, Number-layers ) 
F = F + (Max-freq - Min - freq) / (  Npts-fft-1 1 

End do 

F= Min-freq 
Do I = I, NptSfft/2+1 
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C frequency domain output 

Freq (I) = F*l.e-6 
D (I) =CABS (DATA (I) ) 
D1 (I)=CABS (DATA1 (I) ) 
XR ( I) =F* 1. E- 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DO I=l,NO-BYTES 

END DO 
XI (I) =I 

*********CALCULATE FFT OF SYSTEM RESPONSE****** 
TYPE *,'INPUT ANY CUTOFF FOR SYSTEM INPUT' 
CALL CMDLIN('XT1TLE CHANNEL YTITLE AM!?.') 
CALL GENPLT (XI,DSYS,NO-BYTES) 
TYPE *,'INPUT CHANNELS FOR CUTOFF OF SYSTEM INPUT' 
ACCEPT *, CHANl, CHAN2 

DO I-1,CHANl 

END DO 
DSYS (I)=DSYS (I) *EXP (-(I-CHAN1) **2/20.) 

DO ItCHAN2,NO-BYTES 

END DO 
DSYS(I)=DSYS(I) *EXP(-(I-CHAN2)**2/20.) 

CALL CARRAY (DSYS, XC,NO-BYTES) 
CALL SFFT (XC,NO-BYTES, -1) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
*** CONVOLVE THE SYSTEM INPUT WITH RESPONSE 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DO I=l,NO BYTES/2+1 
XClI) =xc (I) 
XC (I) =DATA (I) *XC (I) 
XC1 (I) =DATA1 (I) *XC1 (I) 

IF (I .NE. 1 .AND. I .NE. NO_BYTES/2+1)THEN 
XC (NO BYTES+2-I)=CONJG (XC (I) ) 
XC1 (NE - BYTES+2-I)=CONJG(XCl (I) ) 

XC (I) =REAL (XC (I) ) 
XCl(I)=REAL(XCl(I)) 

ELSE 

END IF 
END DO 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CALL SFFT (XC,NPTS-FFT, 1) 
CALL FtARFWY (R,XC,NPTS-FFT) 

CALL SFFT (XCl,NPTS-FFT, 1) 
CALL RARRAY (Rl,XCl,NPTS-FFT) 
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*********FFT OF RESULT*********** 
CALL CMDLIN('XT1TLE CHANNEL YTITLE AMPLITUDE PLOT') 
CALL GENPLT (XI, R, NPTS-FFT) 
TYPE *,'INPUT CHANNELS FOR CUTOFF OF OUTPUT OF CONVOLUTION' 
ACCEPT *, CHANl , CHAN2 

DO I=l,CHANl 
R(I)=R(I) *EXP(-(I-CHANl) **2/20.) 
R1 (I)=Rl(I) *EXP(-(I-CHANl)**2/20.) 

END DO 

DO I=CHANZ,NO-BYTES 
R ( I) =R ( I) *EXP (- ( I-CHAN2) **2 /20 . ) 
Rl(I)=Rl(I) *EXP (-(I-CHAN2)**2/20.) 

END DO 

DELF= (SFREQ"1EC) /NO BYTES - 
DO 111, NO-BYTES 

XR ( I) =I *DELF 
END DO 

CALL CARRAY (R, XC, NO-BYTES) 
CALL SFFT (XC,NO-BYTES, -1) 
CALL AARRAY (R,XC, NO-BYTES) 

CALL CARRAY 
CALL SFFT (XCl,NO-BYTES, -1) 
CALL AARRAY (Rl,XCI,NO-BYTES) 

(R1, XC1, NO-BYTES ) 

CALL CMDLIN('XT1TLE MHZ YTITLE MAG PLOT 
CALL GENPLT (XR, R, NPTS FFT/2) 

' )  
- 

CALL CMDLIN('LTYPE 2 OVERLAY LTYPE 1') 
CALL GENPLT (XR, R1, NPTS FFT/2) - 

DO I=l,NPTS_FFT/2 

END DO 
R(I)=R(I)-Rl(I) 

CALL CMDLIN('XT1TLE MHZ YTITLE DIFFERENCE PLOT') 
CALL GENPLT (XR,R,NPTS FFT/2) - 

*******SPECTRAL RESPONSE OF MULTILAYER RESONATOR******* 
CALL CMDLIN('XT1TLE MHZ YTITLE MAG PLOT') 
CALL GENPLT (FREQ,D,NPTS_FFT/2) 

CALL CMDLIN('LTYPE 2 OVERLAY LTYPE 1') 
CALL GENPLT (FREQ,Dl, NPTS FFT/2) - 
DO I=l,NPTS FFT/2 

END DO 
D (I) =D(I) -DI (I) 

CALL CMDLIN('XT1TLE MHZ YTITLE DIFFERENCE PLOT') 
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CALL GENPLT (FREQ,D,NPTS_FFT/2) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TYPE*, 'INPUT ANOTHER PROPERTY FILE (YES=Y) ' 
ACCEPT ' (A) I ,  ANS 
IF(ANS .EQ. 'Yr .OR. ANS .EQ. 'y')GO TO 100 

CALL GENOFF 

End 

Complex Function Reflection (f, Number-layers) 
C 

Implicit None 

Real Pi 
Parameter ( Pi = 3.1415927 ) 

Real D-la ye r , Rho-layer , Velocit y-la ye r , A-la yer 
Complex 2-layer 

C D-layer- layer thicknss 
C Rho-layer - Density of layer 
C Velocity-layer - velocity in layer 
C Z-layer - acoustic impedance of layer 
C A-layer-attenuation layer 

Complex Cexp, Con jg, Cmplx, 
1 2-trans, ! function for calculting line Z 
2 Z-t rans-layer, 
! transmission line 2 of layer 
5 2-load ! terminating acoustic load 
Real F, W, Sinc, CS-constant, Phi-constant 

c f - frequency 
C W - angular frequency 

Integer Number-layers 
! number of layers from input file 
Integer Layer ! number of current layer for calculation 

If ( F .eq. 0. ) Then 
Reflection = 0. 
Return 

End if 

W = 6.283185 * F 
c find find terminating 2 

Call Properties-layer ( D-layer, Rho-layer, 
1 Velocity-layer, Z-layer, A-layer, F, Number-layers ) 
2-load = 2-layer 

C find effective Z for all of the layers starting from the 
C back layer 

Do Layer = Number-layers - 1, 2, -1 
Call Properties-layer ( D-layer, Rho-layer, 

1 Velocity-layer, Z-layer, A-layer, F, Layer ) 
2-load = Z-trans ( W, Velocity-layer, A-layer, 

1 2-layer, Z-load, D-layer ) 
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End do 

C find reflection at front layer 
Call Properties-layer ( D-layer, Rho-layer, 
1 Velocity-layer, Z-layer, A-layer, F, 1 ) 

Reflection = ( Z-load - Z-layer ) /  (Z-load + Z-layer ) 

Return 
End 

Complex function Z-trans ( W, V, A, 2-0, 2 4 ,  L ) 
Implicit None 

C 

C W - angular frequency 
C V acoustic velocity in line 
C A - attenuation in line 
C Z-0 - acoustic impedance of line 
C Z-1 - load impedance at end of line 
C L - Length of line 

Complex Theta, Ctanh, Cmplx, Z-1 
C Theta - complex wave number 
C Ctanh - complex hyperbolic tangent 

Real K, L, W, V, A 
Complex Z-0 

C K - real part of wave number 
K = W/V 
Theta = Cmplx ( A, K ) 
Z-trans = Ctanh ( Theta * L ) 
Z - trans = Z-0 * ( Z-1 + Z-0 * Z-trans ) / 
1 ( 2-0 + Z-1 * Z-trans ) 

Return 
End 

Subroutine Get-Properties ( Number-layers ) 
C 

Implicit None 

Integer Max-layers ! maximum number of layers in sequence 

Parameter ( Max-layers = 20 1 
! appears here and Properties-layer 

Real V( Max-layers ) , Rho ( Max-layers ) , T( Max-layers ) , 
1 A-constant ( Max-layers ) , Power ( Max-layers ) 

C V - velocity of each layer 
C Rho - density of each layer 
C T - thickness of each layer 
C A-constant and Power - used to calculate the attenuation of each layer 
C Attenuation = A-constant * Frequency**Power 

Common V, Rho, T, A-constant, Power 

Integer Numbe r-la ye rs 

Number-Iayers 5 1 



Read ( 3, *, End = 99 ) T ( Number-layers ) 
Read ( 3, *, End = 99 ) A-COnStant ( Number-layers 1, 

1 
Power ( Number-layers 1 

Number-layers = Number-layers + 1 
End do 

99  Continue 

Number-layers = Number-layers - 1 

Return 
End 

Subroutine Properties-layer ( D-layer, Rho-layer, 
1 Velocity-layer, Z-layer, A-layer, F, Layer ) 

C 

Implicit None 

Real D-layer, Rho-layer, Velocity-layer, A-layer, F, 
1 A-layer-constant 
Complex Z-layer, Cmplx 

C D-layer- layer thickness 
C Rho-layer - Density of layer 
C Velocity-layer - velocity in layer 
C Z-layer - acoustic impedance of layer 
C A-layer-attenuation layer 
C F - Frequency 

C layer properties 

Integer Layer ! number of the layer 

Integer Max-layers ! maximum number of layers in sequence 

Parameter ( Max-layers = 20 
! appears here and Get-Properties 

Real V( Max-layers ) , Rho( Max-layers ) , T ( Max-layers 1, 
1 A constant ( Max-layers ) , Power( Max-layers ) 

C V - velocity of each layer 
C Rho - density of each layer 
C T - thickness of each layer 
C A-constant and Power - used to calculate the attenuation of each layer 
C Attenuation = A-constant * Frequency**Power 

Common V, Rho, T, A-constant, Power 

Real W !angular frequency 

Velocity-layer = v (Layer) 
! m/sec 
Rho-layer = Rho 
( Layer) ! kg/m**3 
D-layer = T ( Layer ) ! m 

If ( Power (Layer) .eq. 0. ) Then 

Else 
A-layer = A-constant ( Layer ) 

A-layer = A-constant ( Layer * 
I 
(F*l.e-6)**Power ( Layer 1 
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End if 

C for nonzero attenuation the reflection coefficient is complex 

If ( F .eq. 0. ) Then 
C at zero frequency the attenuation must be zero 

Z-layer = Rho-layer * Velocity-layer 

Z-layer = Rho-layer * Velocity-layer 
W = 6.283185 * F 
Z-layer = Z-layer/CmplX(l.,Velocity-layer*A - layer/W) 

Else 

End if 

Return 
End 

Complex Function Ctanh (X) 

Implicit None 
Complex X, Cexp, Y 

C 

C complex hyperbolic tangent 

If ( Real ( x ) .gt. 80. Then 

Else 
Ctanh = 1. 

Y = Cexp(x) 
Ctanh = ( Y - 1./Y ) /  ( Y + 1./Y ) 

End if 

Return 
End 
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VALUES INPUT TO PROGRAM 

WATER 

1482. water velocity d s e c  
1000. Water density kg/m**3 
-0508 thickness of layer m 
0.025 0. attenation coefficent and power l/m 

STEEL 

5440. Velocity steel m/sec 
7860. Density steel kg/m**3 
-0127 thickness of layer m 
0.0 0. attenuation coefficient and power 

INSULATION 
1800. Velocity insulation(silica1 m/sec 
1180. Density insulation kg/m**3 
.00254 Thickness of layer! m 
749.0 1.1049 attenution coefficient and power 

AIR 
344. VELOCITY OF AIR M/S 
1.2 DENSITY OF AIR KG/M**3 
.000762 THICKNESS OF LAYERM 
4.6 0.0 ATTENUATION(?) AND POWER 

PROPELLANT 
2010. Velocity of propellant m/sec 
1770. Density of propellant kg/m**3 
-1016 Thickness of layer m 
191. 0.0 attenuation and power 
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Figure 8. Difference in frequency response of multilayrer 
resonators that are bonded and disbonded between the 
insulator (0.1") and propellant.. 
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Figure 11. Frequency content in channels 400-800 for the 
case of - no disbond and - - - disbond between insulation ( O S ’ )  
and propellant. 



Figure 12 Difference in frequency response of multilayer 
resonators that are bonded and disbonded between the 
insulator ( O S ' )  and the propellant 



SCANNER 

X Y 

Figure 13. 



SRM 

MI SCANNER 

+l POWER 

Figure 14. 



a 

MAXIMUM 
8' 

E!i::kN I 
(0.015") 

1 
NORMAL 
CHEMLOK 
COND IT ION 
(0m010") 

M IN IMUM 
CHEMLOK 8" 
COND IT ION 
(<0.005") 

GRAFO IL IMPLANTS TYP. 
18 LOCAT IONS (m005" THICK) 

\ 

STEEL CHEMLOK 
TO TO 

CHEMLOK INSULATION 
INTERFACE INTERFACE 

2 4" 

FOR ILLUSTRATION ONLY. 
NOT TO SCALE 

.3 

II 

'INSULATION 
CHEMLOK 
STEEL 

1.-1 
I 1.0" 
r,,l 



Off IGlNAL 
OI: POOR 



SPACE SHUTTLE UNBOND SRMPLE 
SRM-SAM8 

0 
\ 12" 

.25" 

4.0" H-18 
INERT PROPEURNT 

UNBOND CONDITION IS LOCATED AT HSULRTION-LINER INTERFFtCE 



Figure 18. Video out from Spectrum Analyzer at 500 kHz 



Figure 19.500 kHz Tone Burst-Peak Detected 
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Figure 20. Digitized waveform windowed by digitizer to include 
resonance decay. Acquired from bonded region of sample. 
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Figure 22. 500 kHz Tone Burst-Digitize-Frequency Window 
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Figure 23. Pulser-Digitize-Frequency Window 



Figure 24. Pulse Input and Peak Detect 



Figure 25. 
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